Uric acid and its Role in Hypertension and Renal Disease

Richard J Johnson MD Division of Renal Diseases and Hypertension and U of Colorado

Disclaimer: Dr Johnson is an inventor on a patent with the University of Washington and Merck for allopurinol as a treatment of hypertension

Gout, a Partner in Cardiovascular Disease

- •Hypertension 50-60%
- •Obesity 60-80%
- •Metabolic Syndrome 70-80%
- •Chronic Kidney Disease 50-100%
- •Cardiovascular Disease

Is Hyperuricemia an Independent Risk Factor?

Independent

Atherogene

CASTEL

Chicago Heart Association Detection

Framingham 1988

Gothenburg

Heart Institute of Spokane

Hypertension Detection Followup Program

Honolulu Heart

MONICA

NHANES I

PIUMA

Rotterdam

SHEP

Syst-China

Worksite

Not Independent

ARIC

British Regional Heart Study

Coronary Drug Project Report Group

European Working Party

Framingham 1999

Iceland

Social Institute of Finland

Syst-Eur

Meta-analyses for CHD Incidence

Uric acid is independent risk factor RR 1.09 (CI 1.03-1.16) (26

studies, 402,997 subjects) Arthritis Care Res 2010; 62:170-180

Uric acid is independent risk factor RR 1.13 (CI 1.07-1.30) (16

studies, 164,000 subjects) but was not significant in the 8 better performed

studies (RR 1.02, CI 0.91-1.14) PLoS Medicine 2005;2:e76

Uric Acid: A Product of Purine Metabolism

Mutation

Man and Great and Lesser Apes **Urate oxidase (Uricase)**

Allantoin

Other mammals

A Model of Mild Hyperuricemia

Uricase inhibitor

Oxonic acid (OA)

Normal Rat

Uric Acid (0.5-1.4 mg/dl)

Hyperuricemic Rat

Uric Acid (1.7-3.0 mg/dl)

Chronic Hyperuricemia Increases Blood Pressure

Allopurinol Prevents BP Increase in Hyperuricemic Rats

Hyperuricemia Increases Renin Expression

% Glomeruli with Renin

Mazzali et al Hypertension 38:1101-1106, 2001

Uric acid Lowers Endothelial NO Levels

Acute Cellular Effects of Uric acid

Oxidants

Inflammation (MCP-1)

Angiotensin II

Hypertension 2003; 41: 1287-93 Kidney Int 2005; 267: 1739-42 Am J Physiol 2002;282: F991-7, J Hypertens 2010; 28: 1234-42

Hyperuricemia Induces Preglomerular Vascular Disease

Normal Rat

Hyperuricemic Rat

Essential Hypertension

Mazzali et al, AJP Renal Physiol 282:F991, 2002

Goldblatt's Hypothesis

"[My view] is that the [renal] arterial and arterial sclerosis are primary, but of unknown origin, and that ... the vascular disease... produces disturbances of intrarenal hemodynamicsthat determines hypertension"

Goldblatt H. Physiol Reviews 27:120-165, 1947

Hypothesis

Could salt-sensitivity be the consequence of acquired renal injury?

NEJM 346:913, 2002

Mechanisms of Disease

SUBTLE ACQUIRED RENAL INJURY AS A MECHANISM OF SALT-SENSITIVE HYPERTENSION

RICHARD J. JOHNSON, M.D., JAIME HERRERA-ACOSTA, M.D., GEORGE F. SCHREINER, M.D., PH.D., AND BERNARDO RODRÍGUEZ-ITURBE, M.D.

N 1856 Ludwig Traube¹ proposed a role of the kidney in the pathogenesis of hypertension on the basis that hypertension and vascular disease were often associated with chronic Bright's disease.

Models of Salt-Sensitive Hypertension

Sympathetic
Nervous System
Overactivity
Model: phenylephrine
infusion

Increased Renin-Angiotensin Model: Ang II infusion Page Kidney

Endothelial Dysfunction Model: L-NAME

Toxins
(Pb, CSA)

Model: CSA
Pb hypertension
Aging
Model: Aging Rat

Systemic hypoxia
Model: hypobaric hypoxia

Microvascular Disease Interstitial Inflammation Genetic

Model: SHR, Dahl S

Metabolic (low K)
Model: hypokalemia

Sodium sensitive Hypertension

Low Nephron Number
Model: Maternal malnutrition

Does the Arteriolopathy Occur Independently of Blood Pressure?

Systolic Blood Pressure

Arteriolar thickness (µm)

Human Vascular Smooth Muscle Cells Express the Urate Transporter, URAT-1

Uric acid Stimulates Human VSMC but inhibits Endothelial Cell Proliferation

Hyperuricemia Induces Salt-sensitivity

Hyperuricemia Induces Salt-sensitivity

Is there Clinical Evidence for a Role of Uric acid in Hypertension?

Serum Uric Acid Predicts Hypertension

Study	Population	Relative Risk	
Israeli Heart Study (Khan, 1972)	10,000 males	2- fold risk at 5 YRS	
Kaiser Permanente (Selby, 1990)	2,062 subjects	2-fold risk at 6 YRS	
Univ of Utah (Hunt, 1991)	1482 adults	2-fold risk at 7 YRS	
Olivetti Heart Study (Jossa, 1994)	619 males	2-fold risk at 12 YRS	
CARDIA study (Dyer, 1999)	5115 adults	2-fold risk at 10 YRS	
Osaka Health Survey (Taniguchi, 2001)	6,356 males	2-fold risk at 10 YRS	
Hawaii-Los Angeles-Hiroshima Study (Imazu, 2001)	140 males	3.5-fold risk at 15 YR	
Osaka Factory Study (Masuo, 2003)	433 males	1.0 mg/dl UA predicts 727 mm Hg at 5 YR	
Osaka Health Survey (Nakanishi,2003)	2310 males	1.6- fold risk at 6 YRS	
Okinawa (Nagahama, 2004)	4489 adults	1.7-fold risk at 13YRS	
Bogalusa Heart (Alper, 2005)	679 children	Increased risk at 11 YRS	
Framingham (Sündstrom , 2005)	3329 adults	1.6-fold at 4 YRS	
Normative Aging Study (Perlstein, 2006)	2062 males	1.5-fold at 21 YRS	
MRFIT (Krishnan, 2007)	3073 men	1.8-fold at 6 YRS	
ARIC (Mellen, 2006)	9,104 adults	1.5-fold at 9 YRS	
Nurse Health Study(Forman, 2009)	1500 women	1.89 fold at 5 years	
Health Professional Followup (Forman, 2007)	750 men	1.08-fold at 8 YRS* (Not significant)	

Serum Uric Acid in Adolescents with Hypertension

Feig and Johnson, Hypertension 42:247-252, 2003

Relationship Between SBP and Serum Uric Acid in Adolescents

Systolic BP (mm Hg)

Uric Acid (mg/dl)

Effect of allopurinol vs placebo in newly diagnosed hypertension in adolescents

- Randomized double-blinded placebo controlled crossover design
- 30 Children 11-17yr old, new diagnosis essential hypertension
- Uric acid >6mg/dl
- Pharmacologically naive
- Allopurinol 200mg bid vs. placebo
- Four week medication phases with 2 week washout between arms

Effect of allopurinol vs placebo in newly diagnosed hypertension in adolescents

Age	15.1±2.1 yrs
% Male	60%
Weight	97±23 kg
BMI	$33\pm6.5 \text{ kg/m}^2$
Race	White 46%
	Hispanic 23%
	African American 31%
Uric Acid	$6.9 \pm 1.2 \text{mg/dL}$

Lowering Uric Acid Reduces SBP in Adolescents with Hypertension

In Subjects whose Uric acid was reduced to < 5 mg/dl, 86% (19/22) became normotensive versus 3% (1/30) controls

Could Uric acid have a role in the Epidemic of Hypertension?

Hypertension is Increasing

The Gout Epidemic

Patterns of Food Intake in the USA

	<u>1980</u>	1990	2000
RED MEAT (lbs)	126	112	114
MILK (gallons)	27.6	25.7	22.5
SWEETENERS (lbs)	123	132	149
Sugar	84	64	64
High Fructose corn syrup	19	50	63
Fructose (total)	<i>52</i>	57	64

US Census Bureau, Statistical Abstract of the US, 2003, no 214

Sugar and Fructose

- Sugar (sucrose) consists of a disaccharide of glucose and fructose
- •High fructose corn syrup (HFCS) is a mix of 55% fructose and 45% glucose
- •Fructose and to a lesser extent, sucrose, are also present in honey and fruit (especially fruit juices and dried fruits)

Fructose Metabolism

Fructose Acutely Increases Serum Uric Acid

Fructose (1 g/kg body wt) increases serum uric acid within 30 minutes

Soft Drink Consumption is Increasing

Nielsen and Popkin Am J Prev Med 2004; 27:205-210

Third National Health and Nutrition Exam Survey Choi et al Arth Rheum 2008; 59:109-16

Could Sugar be a True Risk Factor for Hypertension?

Fructose Induced Hypertension is Improved with Xanthine oxidase inhibitor (Febuxostat)

High Fructose Intake from Added Sugars is associated with Increased Risk of Elevated BP

Risk for elevated BP in those with high (>74 g/d) vs low fructose (<74 g/d) intake in NHANES III

Fructose Raises Blood Pressure in Humans

Males, 24 years old, given 60 g fructose or glucose

Fructose-induced Ambulatory BP Rise is blocked by Allopurinol

74 men randomized to fructose (200g/d) or fructose plus allopurinol for two weeks

What is the Role of Uric acid in Renal Disease?

Hyperuricemia Causes Glomerular Hypertension in Rats

Uric Acid

Glomerular Pgc

Hyperuricemia Causes Glomerular Hypertrophy

Hyperuricemia Causes Glomerulosclerosis

Role of Uric acid in Renal Progression

Groups:

- •Sham
- •Remnant Kidney (RK)
- •RK + Hyperuricemia (RK-OA) (induced by the uricase inhibitor, oxonic acid)
- •RK –OA and Allopurinol (RK-OA-AP)

Role of Uric acid in Renal Progression

Hyperuricemia Induces Vascular Disease in Rats with Kidney Disease

Fructose Induced Renal Microvascular Disease and Glomerular Hypertension

Fructose-induced Hyperuricemia causes Systemic and Glomerular Hypertension

Sanchez-Loazada et al, Am J Physiol 2008; 294: F710-8

Fructose Accelerates Renal Disease in the Remnant Kidney

Diet	Proteinuria, mg/dl	C _{creatinine} , ml/min
Normal	33±5.7	1.23±0.04
Glucose	35±7.5	1.16±0.08
Fructose	73±15.4*	0.96±0.08*

Fructose Induces Inflammation in the Proximal Tubule

Fructose causes Tubular injury in the Rat

Marilda Mazzali **Duk-Hee Kang**

Dan Feig

Yuri Sautin

John Kanellis

Sergei Zharikov

Mike Gersch Sirirat Reungji

Karen Price

Susumu Watanabe

Pietro Cirillo

Xiaosen Ouyang

Wei Mu

George Henderson

University of Colorado Investigators